

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Communication

The reaction of 2,5-diphenylphosphacymantrene with solid KOH in the presence of crown ethers: Synthesis of the anionic η^4 -phosphoryl manganese complexes

Vasily V. Bashilov, Allan G. Ginzburg^{*}, Alexander F. Smol'yakov, Fedor M. Dolguschin, Pavel V. Petrovskii, Viatcheslav I. Sokolov

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, Vavilov St., 119991 Moscow, Russian Federation

ARTICLE INFO

Article history: Received 16 June 2009 Received in revised form 2 September 2009 Accepted 3 September 2009 Available online 11 September 2009

Keywords: Manganese complexes Phosphacymantrenes Crown ethers Nucleophilic addition OH nucleophile Phosphoryl rearrangement

ABSTRACT

2,5-Diphenylphosphacymantrene (1) reacts with solid KOH in the presence of crown ethers in C_6H_6 or CH_2Cl_2 at room temperature adding OH nucleophile to the phosphorus atom to afford anionic complexes $[(CO)_3Mn-\eta^4-2,5-Ph_2H_2C_4P(=O)H]^-$ [K–Crown]⁺, where Crown = 18-crown-6 (2) or dicyclohexyl-18-crown-6 (3). Complexes 2 and 3 are characterized by ¹H, ³¹P, ¹³C NMR and IR-spectra. The structure of 2 is established by X-ray crystal structure data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

 $(n^{5}-Cyclopentadienyl)$ manganesetricarbonyl(cymantrene) is one of the most studied π -complexes of transition metals with carbonyl ligands (for the recent review see Ref. [1]). Replacement of one CH group in the ligand for a heteroatom changes the property of a compound greatly. Among this group of π -complexes phosphacymantrenes have been investigated mostly by group of Mathey [2-4]. According to quantum chemical calculations, the LUMOorbital in phosphacymantrenes is largely localized on the P atom and by this reason the nucleophilic attack could be expected to proceed on phosphorus atom [2,3]. Previously, it was established that η^5 -3,4-dimethylphosphacymantrene (THF, -78 °C) when reacting with PhLi or t-BuLi could add Ph or t-Bu groups on phosphorus. From the ³¹P NMR data it was proposed that unstable intermediates with η^4 -type coordination of phospholyl ligand with Mn were formed [3,4]. Later we found that 2,5-diphenylphosphacymantrene (1) reacts with Na_2PdCl_4 and NaOAc in ROH (R = Me, Et) to form P-alkoxyderivatives [5]. We were interested to investigate the addition of other nucleophilic reagents to that substrate. In this communication we report on the reaction of 1 with solid KOH in the presence of crown ethers.

2. Results and discussion

We found that in dichloromethane at room temperature 1 can react with solid KOH in the presence of 1 equiv. of a crown ether anionic salt-like complexes $[(CO)_3Mn-\eta^4-2,5$ to form $Ph_2H_2C_4P(=0)H]^-$ [K-Crown]⁺, where Crown = 18-crown-6 (2) or dicyclohexyl-18-crown-6 (3) (Scheme 1). In the absence of crown ether the reaction 1 with KOH proceeds as well according to ³¹P NMR-spectra, however, single crystals were not obtained. The reaction has been monitored by ³¹P NMR-spectra but we have not been able to detect any intermediate and registered only the transitions $1 \rightarrow 2$ or 3. Probably the primary anionic intermediate is very unstable and quickly rearranges into the final anions 2^- or 3^- with the migration of H from oxygen to phosphorus, counter ion being K⁺ complexed to crown ether. Similar rearrangements of the unstable compounds of the type $R_2P(OH)$ (R = alkyl, aryl) into the stable four-coordinated compounds R₂P(=O)H are well-known in organophosphorus chemistry [6,7].

Complexes **2** and **3** are solids stable in inert atmosphere and characterized by IR, ¹H, ¹³C and ³¹P NMR-spectra. Formation of them is accompanied by the sharp changes in ³¹P NMR-spectra: instead of a singlet, at -30.6 ppm (**1**), a doublet centered between 0 and 1 ppm arises with a great ¹*J*(H–P) = 516 or 521 Hz for **2** or **3** which evidences the direct P–H bond.

The crystal structure of ${\bf 2}$ is established by X-ray data. It is the salt composed of the $[(CO)_3Mn-\eta^4-2,5-Ph_2H_2C_4P]^-$ anion and

^{*} Corresponding author. Fax: +7 499 135 5058. E-mail address: allan@ineos.ac.ru (A.G. Ginzburg).

E mail daaress, analie meestaeria (n.e. emzburg).

⁰⁰²²⁻³²⁸X/ $\$ - see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2009.09.013

Scheme 1.

cation K^+ coordinated by six oxygen atoms of the crown ether (Fig. 1).

The bond length P(1)=O(1P) 1.492(2) Å in **2** is almost equal to the bond length P=O in the triphenylphosphinoxide (1.482 Å). In crystal, both cation and anion are situated in general position. In anion 2^{-} five-membered cycle C₄P is in the "envelope" conformation, P atom is going out from the plane C(1)-C(2)-C(3)-C(4) by 0.675 Å to the site opposite to the manganese atom. Distance Mn(1)-P(1) 2.8081(7) Å exceeds considerably the sum of covalent radii Mn (1.35 Å) and P (1.13 Å) [8]. The distance Mn(1)–P(1) in 2 is greatly elongated as compared to the bond lengths (Mn)-(P) (2.368–2.422 Å) in the complexes with η^5 -phosphoryl ligand such as the ketone η^5 -2-benzoyl-3,4-dimethylphosphacymantrene [9] $(2.387(2) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5 [10] (2.376(3) \text{ Å}); \text{ complex } (1) \rightarrow W(CO)_5$ $(CO)_{2}(L)Mn-\eta^{5}-3,4-Me_{2}-2-CHO-C_{4}HP,$ where $L = PPh_3$ [11] (2.420(1) Å). In these complexes P atom is going out from the plane C(1)-C(4) no more than 0.048–0.050 Å, but in anion 2^- this distance is 0.675 Å. From these data it may be concluded that bond Mn–P in **2** is absent or very weak, and phosphoryl ligand is η^4 coordinated with Mn. Besides that, a small change in the C-C bond length in the five-membered ring is observed alternating as "longshort-long" that evidences the violation of the η^5 -srtucture of that fragment. To our knowledge, complex 2 is the first anionic complex with η^4 -coordinated to manganese phosphoryl ligand characterized by X-ray data. Earlier the highly relevant zwitterionic complex $(CO)_3Mn^--\eta-3,4-Me_2H_2P^+(Ph)(CH_2CH_2CO_2Et)$ was described by Mathey and coworkers [3]. The noteworthy feature of this complex was "a relatively weak P-Mn interaction at 2.7651(8) Å". Crystal structure of the related zwitterion complex (CO)₃Mn⁻-η⁴- $(CRCRCRCP^+Me_2)$ where R = CO₂Me had been described by Lindner et al. [12], but this complex did not contain P-Mn bond.

It is important to emphasize that cation K⁺ in crystal takes part in two more coordinative interactions, with O atom of a phosphoryl group [K(1)–O(1P) 2.618(2) Å] and with oxygen atom of a carbonyl group in a neighbor molecule [K(1)–O(1)_{x,0.5-y,-0.5+z}

Fig. 1. Molecular structure and numbering scheme for compound **2**. Selected bond lengths (Å) and angles (°): Mn(1)–C(1) 2.172(3), Mn(1)–C(2) 2.084(3), Mn(1)–C(3) 2.078(3), Mn(1)–C(4) 2.155(3), Mn(1)–P(1) 2.8081(7), P(1)–O(1P) 1.492(2), P(1)–H(1P) 1.30(3), P(1)–C(1) 1.778(3), P(1)–C(4) 1.777(3), C(1)–C(2) 1.441(4), C(2)–C(3) 1.418(4), C(3)–C(4) 1.438(3), K(1)–O(1P) 2.618(2), K(1)–O(1)_{x,0.5-y.-0.5+z} 2.772(2), K(1)–O(crown) 2.766(2)–2.859(2), C(1)–P(1)–C(4) 89.4(1), O(1P)–P(1)–H(1P) 110(1).

Fig. 2. Infinite chain in the crystal 2 formed due to the cation-anion K-O coordination bonds.

2.772(2) Å] to form the supramolecular structure as an infinite chain along the crystallographic axes *c* (Fig. 2). This probably points out to the strong delocalization of a negative charge in anion over all oxygen atoms in phosphinoxide and carbonyl groups. A relatively slight shift of v(CO) frequencies, 60 and 45 cm⁻¹ in **2** and **3** is also in accordance with a strong delocalization of negative charge (usually in anionic Mn complexes $\Delta v(CO)$ is 80–100 cm⁻¹ or more).

3. Experimental

2,5-Diphenylphosphacymantrene (**1**) was prepared according to the procedure [13]. ¹H, ³¹P and ¹³C NMR-spectra were registered using spectrometer Bruker–Avance 400 at 400.16 MHz for ¹H, 161.9 MHz for ³¹P and 100.6 MHz for ¹³C. Chemical shifts were measured relative TMS (¹H, ¹³C) or H₃PO₄ (³¹P). Complexes **2** and **3** were obtained and handled under argon atmosphere.

3.1. Synthesis of complexes 2 (or 3)

Complex 2: 37.4 mg 1 (0.1 mmol) and 28 mg of 18-crown-6 (0.106 mmol) were dissolved in 3-4 ml CH₂Cl₂, one granule of solid KOH (56–60 mg, \sim 10-fold excess) was added and the mixture was shaken from time to time at room temperature in the dark. After \sim 24 h on monitoring ³¹P NMR-spectra the starting compound **1** reacted to give 2 in quantitative yield. Excess of KOH was removed. To yellow solution 10 ml of pentane were added, the light-yellow crystals being formed. The crystals were washed twice with pentane and dried in vacuum. Yield 44 mg. Anal. Calc. for C₃₁H₃₇O₁₀PKMn: C, 53.60; H, 5.37; P, 4.46. Found: C, 52.91; H, 5.33; P, 4.46%. Spectral data for **2**. ¹H NMR (CD₂Cl₂), δ , ppm: 7.92 $(dt, 1H, {}^{1}J(H_{P}-P) = 516.0, {}^{4}J(H_{P}-H_{3.4}) = 2.3 \text{ Hz}, P(O)H); 7.40 (d,$ 4H), 7.18 (t, 4H), 6.99 (t, 2H), 10H, o, m, p C₆H₅; 5.37 [dd, 2H, ${}^{3}J(H_{3,4}-P) = 13.7, {}^{4}J(H_{3,4}-H_{P}) = 2.3 \text{ Hz}, H(3,4)]; 3.47 (s, 24H, CH_{2} in)$ crown ether). ³¹P NMR (CD₂Cl₂): δ 0.95 ppm, dt, ¹J(P–H_P) = 516.0, ³*J*(P–H_{3,4}) 13.7 Hz.

¹³C NMR (CD₂Cl₂), *δ*, ppm: 228.8, Mn(CO)₃; 140.9, key-C-atoms of C₆H₅; 128.2, 125.3, 124.0, C-atoms of *o*,*m*,*p*-positions of C₆H₅; 79.3, d, $J({}^{13}C-{}^{31}P) = 17$ Hz, two C-atoms in β-positions to P; 70.2, C-atoms of crown ether; 66.7, d, $J({}^{13}C-{}^{31}P) = 91$ Hz, two C-atoms in α-positions to P.

IR-spectra (CH₂Cl₂): v(CO) 1890 cm⁻¹ (broad, E-mode), 1980 cm⁻¹ (A₁-mode). IR-spectra in the solid state (nujol): v(CO)1872 (E-mode), 1964 cm⁻¹ (A₁-mode). For **1** (CH₂Cl₂): v(CO)1950 cm⁻¹ (broad, E-mode), 2025 cm⁻¹ (A₁-mode).

Complex **3** prepared as described above from 25 mg **1** (0.067 mmol) and 25 mg of dicyclohexyl-18-crown-6 (0.067 mmol) in 2.5–3 ml CH₂Cl₂, yield \sim 30 mg.

Spectral data for **3**: ¹H NMR (CDCl₃) δ , ppm: 8.10 (dt, 1H, ¹*J*(H_P-P) = 521.0, ⁴*J*(H_P-H_{3,4}) = 2.2 Hz, PH); 7.39 (d, 4H), 7.13 (t, 4H), 6.94 (t, 2H), 10H, *o*, *m*, *p* C₆H₅; 5.32 (dd, ³*J*(H_{3,4}-P) = 13.6, ⁴*J*(H_{3,4}-H_P) = 2.2 Hz (2H, protons H(3,4)). The protons of crown ether appear as two multiplets at 3.41 and 1.24. ³¹P NMR-spectra:

0.20, dt, ${}^{1}J(P-H_P)$ 521.0, ${}^{3}J(P-H_{3,4})$ = 13.6 Hz. IR-spectra (CH₂Cl₂): v(CO) 1890 and 1980 cm⁻¹.

3.2. X-ray crystal data for 2

The single crystals for X-ray study were obtained by slow diffusion of pentane into the benzene solution of **2** in NMR-tube. $C_{31}H_{37}KO_{10}PMn$, M = 694.62, monoclinic, space group $P2_1/c$, a = 20.372(1), b = 7.4744(5), c = 22.817(1)Å, $\beta = 108.551(1)^\circ$, V = 3293.8(4)Å³, $D_{calc} = 1.401$ g/cm³, Z = 4, $\mu = 0.630$ mm⁻¹. Single-crystal X-ray diffraction experiment was carried out with a Bruker SMART 1000 CCD diffractometer [14] (graphite monochromated Mo K α radiation, $\lambda = 0.71073$ Å, ω -scan technique, T = 120 K). The H(1P) atom was localized from different Fourier synthesis and involved in refining in isotropic approximation. The refinement converged to $wR_2 = 0.1247$ and GOF = 0.990 for all 7148 independent reflections [$R_1 = 0.0520$ was calculated against *F* for 5710 observed reflections with $I > 2\sigma(I)$], 401 refined parameters. The SHELXTL-97 program package [15] was used throughout the calculations; CCDC reference number 735789.

Supplementary material

CCDC 735789 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Acknowledgments

This work has been done under the financial support of the Russian Foundation for Basic Research (Projects 08-03-00169 and 07-03-00631).

References

- A.G. Ginzburg, Usp. Khim. 78 (3) (2009) 211 (Russ. Chem. Rev. 78 (3) (2009) 211).
- [2] C. Guimon, G. Pfister-Guilliouso, F. Mathey, Nouv. J. Chem. 3 (1979) 725.
- [3] B. Deschamps, P. Toullec, L. Ricard, F. Mathey, J. Organomet. Chem. 634 (2001) 131.
- [4] B. Deschamps, L. Ricard, F. Mathey, J. Organomet. Chem. 689 (2004) 4647.
- [5] A.G. Ginzburg, V.V. Bashilov, F.M. Dolgushin, A.F. Smol'yakov, A.S. Peregudov, V.I. Sokolov, J. Organomet. Chem. 694 (2009) 72.
- [6] A. Michaelis, L. Gleichmann, Chem. Ber. 15 (1882) 801.
- [7] A. Kirby, S.D. Warren, The organic chemistry of phosphorus, Elsevier, Amsterdam, London, New York, 1967.
- [8] S.S. Batsanov, Zh. Neorg. Khim. 36 (1991) 3015 (Russ. J. Inorg. Chem. 36 (12) (1991)).
- [9] F. Mathey, A. Mitschler, R. Weiss, J. Am. Chem. Soc. 100 (1978) 5748.
 [10] A.G. Ginzburg, A.S. Batsanov, Yu.T. Struchkov, J. Organomet. Chem. USSR 4
- (1991) 417.
- [11] B. Deschamps, L. Ricard, F. Mathey, Organometallics 18 (1999) 5688.[12] E. Lindner, A. Rau, S. Hoehne, J. Organomet. Chem. 218 (1981) 41.
- [12] E. Enditer, A. Rad, S. Hoenne, J. Organomet, Chem. 218 (1981) 41. [13] A. Breque, F. Mathey, C. Santini, J. Organomet, Chem. 165 (1979) 129.
- [14] SMART V5.051 and SAINT V6.01, Area Detector Control and Integration Software, Bruker AXS, Madison, Wisconsin, USA, 1998.
- [15] G.M. Sheldrick, SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 1998.